Structures of the Rare-Earth–Platinum Compounds R_7Pt_3 , R_2Pt , R_5Pt_3 and RPt

BY JOËL LE ROY, JEAN-MICHEL MOREAU AND DOMINIQUE PACCARD

Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève 4, Switzerland and Centre Universitaire de Savoie, IUT Annecy et Laboratoire de Magnétisme, CNRS, Grenoble, France

and Erwin Parthé

Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève 4, Switzerland

(Received 2 June 1977; accepted 2 July 1977)

Structures of rare-earth-platinum compounds are identified. R_7Pt_3 compounds (R = La, Ce, Pr, Nd, Sm, Gd) crystallize with the Th₇Fe₃ structure type. PrPt and NdPt have a high-temperature modification which corrresponds to the CrB type. R_2Pt and R_5Pt_3 compounds crystallize with the Ni₂Si and Mn₅Si₃ types, where R = Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y for both structure types. Atomic parameters were refined from single-crystal intensities collected on Gd₂Pt. The coordination polyhedra of Ni₂Si are compared with those of the Fe₂P type. It is shown that a greatly idealized version of the Ni₂Si type can be derived by periodic unit-cell twinning of the cubic-close-packed element structure. A survey of the known R_x Pt compounds ($x \ge 1$) is given. These compounds are compared with those occurring in the corresponding Ni and Pd systems.

Introduction

A survey of the crystal structures of rare-earthtransition-metal compounds $R_x T$ with $x \ge 1$ (T = Co, Rh, Ni, Pd) has been made (Parthé & Moreau, 1977). These structures may be grouped into those where all T atoms are at the centres of trigonal prisms of R atoms and those where the T atoms are at the centres of either trigonal prisms, cubes, square antiprisms and/or truncated square antiprisms. To see if this classification is still valid for T = Pt, systematic studies of the R-Pt systems have been made. We report in this paper the structure types and lattice parameters of some of the phases which have been identified. No phase diagram of any R-Pt system was found in the literature except for Yb (Iandelli & Palenzona, 1975).

Experimental

The alloys were made from commercially available elements of high purity: rare earth 99.9%, Pt 99.99%. Samples were prepared by conventional arc-melting techniques. X-ray photographs from powdered samples were obtained on a Guinier camera with Cu $K\alpha$ radiation and were calibrated with Si powder. Small single crystals of Gd₂Pt suitable for X-ray analysis were isolated by mechanical fragmentation and intensities were measured with graphite-monochromated Mo $K\alpha$ radiation on a computer-controlled four-circle goniometer in the θ -2 θ scan mode. All computer programs used were those of the XRAY system (1976), except for the program calculating intensities for X-ray powder-diagram identification (Yvon, Jeitschko & Parthé, 1977).

Structure determination

In the rare-earth-rich part of the R-Pt systems new compounds have been identified with the following structure types: Th₂Fe₃, Ni₂Si, Mn₅Si₃ and CrB.

Sm₇Pt₃ and Gd₇Pt₃ crystallize with the hexagonal Th₇Fe₃ structure type. This type has already been found with La₇Pt₃, Ce₇Pt₃, Pr₇Pt₃ and Nd₇Pt₃ (Olcese, 1973). The atomic parameters for Gd₇Pd₃ (Moreau & Parthé, 1973) were used in the calculation of the powder diffraction intensities [*P*6₃*mc*; two Gd(1) in 2(*b*): z = 0.06; six Gd(2) in 6(*c*): x = 0.125, z = 0.25; six Gd(3) in 6(*c*): x = 0.5395, z = 0.0499; and six Pd in 6(*c*): x = 0.8102, z = 0.3125]. No efforts were made to refine the atomic parameters of Sm₇Pt₃ and Gd₇Pt₃. Lattice parameters of all *R*₇Pt₃ compounds are reported in Table 1.

The orthorhombic Ni₂Si (or anti-PbCl₂, C23) type was found to occur with all elements from Gd to Lu and Y. A single crystal of Gd₂Pt has been isolated and X-ray intensities were collected. Space group *Pnma* with point positions similar to Ni₂Si were assumed (Toman, 1952). Positional and isotropic thermal Table 1. Lattice parameters of R_7Pt_3 compounds with the Th_7Fe_3 structure type (space group $P6_3mc$)

E.s.d.'s are in parentheses; V = volume of the unit cell; n = number of atoms in the unit cell.

c (Å) $(V/n)^{1/3}$ (Å) References a (Å) 10.336 6.516 3.11 La₇Pt₃ (a)Ce₇Pt, 10.204 6.399 3.07 (a) Pr,Pt, 10.137 6.376 3.05 (a) 10.099 Nd,Pt, 3.04 6.351 (a) Sm,Pt, 10.017(3)6.298(3)3.01 (b)9.977 (5) 6.275(5)Gd,Pt, 3.00 (b)Y, Pt, 9.864 6.299 2.98 (c)

References: (a) Olcese (1973). (b) This work. (c) Geballe, Matthias, Compton, Corenzwit, Hull & Longinotti (1965).

Table 2. Atomic parameters for Gd₂Pt crystallizing in the Ni₂Si structure type, with e.s.d.'s in parentheses

The Debye–Waller factor is defined as $\exp[-2\pi^2 10^{-2} U(2 \sin \theta/\lambda)^2]$. The space group is *Pnma*.

	Equipoint	х	y	Ζ	$U(\dot{A}^2)$
Gd(1)	4(c)	0-8538 (7)		0.0810 (6)	0·7
Gd(2)	4(c)	0-9883 (7)		0.6705 (6)	0·7
Pt	4(c)	0-2576 (6)		0.0953 (5)	0·8

Table 3. Lattice parameters of R_2 Pt compounds with the Ni₂Si structure type (space group Pnma)

E.s.d.'s a	re in			V = volume oms in the ur			unit	cell;	n =
	a (Å	6	た(Å)	c (Å)	(V/n	1/3	Dofore	

	u (A)	$D(\mathbf{A})$	$\mathcal{C}(\mathbf{A})$	$(\mathbf{v}/n)^{c}$	References
Gd ₂ Pt	7.186 (5)	4.813 (3)	8.854 (8)	2.95	(<i>a</i>)
Tb,Pt	7.147 (5)	4.772 (3)	8.763 (9)	2.92	<i>(a)</i>
Dy ₂ Pt	7.101 (7)	4.747 (4)	8.731 (8)	2.91	(a)
Ho ₂ Pt	7.054 (7)	4.722 (4)	8.686 (8)	2.89	(a)
Er,Pt	7.037 (4)	4.705 (3)	8.668(7)	2.88	(a)
Tm,Pt	7.008 (5)	4.688 (5)	8.619 (9)	2.87	(a)
Yb ₂ Pt	7.614	4.400	8.957	2.92	<i>(b)</i>
Lu_2Pt	6.978 (4)	4.630 (9)	8.584 (9)	2.85	<i>(a)</i>
$Y_2 Pt$	7.141 (4)	4.764 (3)	8.753 (6)	2.92	(a)

References: (a) This work. (b) Iandelli & Palenzona (1975).

parameters of the structure refined satisfactorily. Relativistic Hartree–Fock scattering factors were used (Cromer & Mann, 1968) and anomalous-dispersion corrections were made with values taken from *International Tables for X-ray Crystallography* (1974). $R = \Sigma |\Delta F| / \Sigma |F_o|$ was 0.10 for 468 observed reflexions.* The final positional and thermal parameters Table 4. Lattice parameters of R_5 Pt₃ compounds with the Mn₅Si₃ structure type (space group P6₃/mcm)

E.s.d.'s are in parentheses, V = volume of the unit cell; n = number of atoms in the unit cell.

	a (Å)	c (Å)	c/a	$(V/n)^{1/3}$	References
Gd, Pt,	8.479 (4)	6·275 (7)	0.740	2.90	(a)
Tb, Pt,	8.415 (5)	6.230 (8)	0.740	2.88	(a)
Dy ₅ Pt ₃	8.367 (4)	6-210 (7)	0.742	2.87	(a)
Ho, Pt,	8.319 (5)	6.191 (8)	0.744	2.85	<i>(a)</i>
Er, Pt,	8.298 (2)	6.181 (4)	0.745	2.85	(<i>a</i>)
Tm, Pt,	8.252 (3)	6.128 (5)	0.743	2.83	(<i>a</i>)
Yb, Pt,	8.337	6.251	0.750	2.87	<i>(b)</i>
Lu ₅ Pt ₃	8.183 (1)	6.155 (9)	0.752	2.82	(<i>a</i>)
Y,Pt,	8.370 (3)	6.276 (5)	0.749	2.88	(a)

References: (a) This work. (b) Iandelli & Palenzona (1975).

are listed in Table 2. Lattice parameters of R_2 Pt compounds are reported in Table 3. The decrease of the lattice constants from Gd₂Pt to Lu₂Pt is a consequence of the lanthanide contraction. The deviations for Yb₂Pt (*a* and *c* larger, *b* smaller than expected) are probably correlated with the divalent character of Yb in this compound. A similar deviation has been observed for Yb₂Au in comparison with the other R_2 Au compounds which all have the Ni₂Si crystal structure (McMasters, Gschneidner, Bruzzone & Palenzona, 1971).

The hexagonal Mn_sSi_3 (D_8^8) type with point positions similar to Gd_sBi_3 [Hohnke & Parthé, 1969; $P6_3/mcm$; six Gd(1) in 6(g): x = 0.25; four Gd(2) in 4(d) and six Bi in 6(g): x = 0.61 has been found to occur with all rare-earth elements from Gd to Lu and Y. The atomic parameters were not refined, but the refined lattice parameters are reported in Table 4.

PrPt and NdPt are known to crystallize with the FeB structure type (Dwight, Conner & Downey, 1965). However, it was found that samples quenched from high temperatures have the CrB structure type. For the intensity comparison we used the atomic parameters of GdNi determined by Dwight, Conner & Downey (1965) [*Cmcm*; four Gd in 4(c): x = 0.135; and four Ni in 4(c): x = 0.435]. The refined unit-cell parameters of these high-temperature modifications are: PrPt: a = 3.891 (2), b = 10.899 (7), c = 4.542 (4) Å.

Discussion

The Th₇Fe₃ structure type has already been observed with R_7 Rh₃, R_7 Ir₃, R_7 Ni₃ and R_7 Pd₃ (Olcese, 1973; Moreau & Parthé, 1973). The Mn₅Si₃ type has also been found with R_5 Rh₃ (Raman & Ghassem, 1973; Le Roy, Moreau, Paccard & Parthé, 1977a). These compounds together with R_5 Pt₃ are examples of the second branch of the Mn₅Si₃ type where the second

^{*} A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32858 (6 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 INZ, England.

alloying partner is also a transition element. The first compounds of this branch to be discovered were Zr₅Ir₃, Hf₅Ir₃ and Zr₅Pt₃ (Biswas & Schubert, 1967). The axial ratios c/a for R_5Pt_3 and R_5Si_3 are about the same (~ 0.74). This is also true for Zr_5Ir_3 and Zr_5Si_3 (~ 0.69) . Thus with this structure type one does not find the characteristic relative unit-cell changes known, for example, with the CrB, FeB or U₃Si, types which occur when the alloying partner is a transition element in one case or a b element (those with filled d shells) in the other. It seems that the value of the c/a ratio of the Mn_sSi₁ phases becomes larger if there are fewer valence electrons available. The highest value known occurs with Ba_5As_3 , where c/a = 0.832 (Better, Hütz & Nagorsen, 1976). However, the size of the atoms is also an influence on the c/a ratio.

The common presence of the two geometrically related structure types has been observed in the equiatomic RNi and RAu compounds. Based on the structure block stacking model it was possible to derive equations which allow a calculation of the unit-cell parameters of one type to be made if the data are known for the other (Hohnke & Parthé, 1966). To calculate the CrB unit cell from the FeB cell one finds that

$$a_{\rm CrB} = c_{\rm FeB} \sqrt{\left\{ 2 - \sqrt{\left[4 - \left(\frac{a_{\rm FeB}}{c_{\rm FeB}}\right)^2\right]} \right\}}$$
(1)

$$b_{\rm CrB} = c_{\rm FeB} \sqrt{\left\{ 2 + \sqrt{\left[4 - \left(\frac{a_{\rm FeB}}{c_{\rm FeB}}\right)^2\right]} \right\}}$$
(2)

$$c_{\rm CrB} = b_{\rm FeB}.\tag{3}$$

The theoretical CrB cell data for PrPt and NdPt based on the FeB data published by Dwight, Conner & Downey (1965) are: PrPt: a = 3.88, b = 10.72, c = 4.56 Å; and NdPt: a = 3.86, b = 10.67, c = 4.55 Å, which may be compared with the experimental values listed in the previous section.

Compounds with the composition $R_{2}T$, except Yb₂Pt (Iandelli & Palenzona, 1975), have not yet been found. For compounds of this composition which are built up exclusively of trigonal prisms, the trigonal-prism linkage coefficient has to be three (Parthé & Moreau, 1977). Different geometrical realizations are possible. Three are shown in Fig. 1: the orthorhombic Ni₂Si (or anti-PbCl₂) type, the hexagonal Fe₂P type and the monoclinic Ge₂Os type. In Fig. 1 the tables used to calculate the trigonal-prism linkage coefficients are shown. All these structures have infinite columns of trigonal prisms, stacked on their triangular faces. The Ge₂Os structure is unique because there are double columns, formed by joining two columns along a common face. The Ni₂Si structure has prism columns which are joined along two edges to other prism columns, while in Fe₂P one finds isolated prism columns and a column assembly where each prism column is joined along three edges to other prism columns. The Ni₂Si and Fe₂P structures are closely related. One finds that exactly the same coordination figures (Fig. 2) occur in both. The Ni₂Si and Fe₂P structures have therefore to be considered as homotectic. However, it does not seem possible here to transform one into the other by a layer-stacking mechanism. This close geometrical relationship is perhaps also the reason why

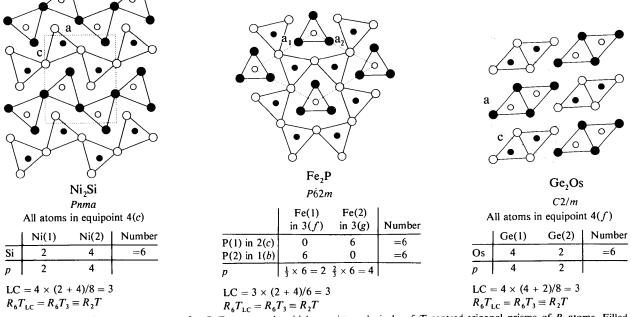


Fig. 1. Three possible structure types for R_2T compounds which consist exclusively of T centred trigonal prisms of R atoms. Filled circles correspond to atoms at a height of 0 or $\frac{1}{4}$ and empty circles to those at a height of $\frac{1}{2}$ or $\frac{3}{4}$.

La

Cc

Pr Nd Sm

Ho

Er

Tm

Yb

Lu Y

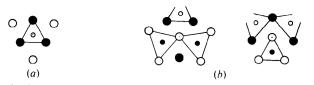


Fig. 2. The three coordination figures which occur in Ni,Si and Fe₂P as seen along the orthorhombic *b* or hexagonal *c* axes respectively. Large circles correspond to Ni or Fe atoms and small circles to Si or P atoms. The full circles are displaced by $(0,\frac{1}{2},0)$ or $(0,0,\frac{1}{2})$ respectively from the plane of the open circles. (*a*) The Si(P) atom environment in Ni,Si(Fe,P). (*b*) The two kinds of Ni(Fe) atom environment in Ni,Si(Fe,P).

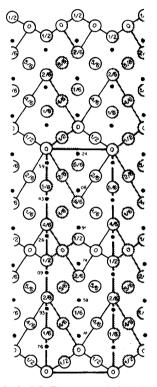
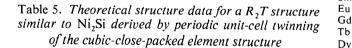



Fig. 3. A hypothetical R_2T structure derived by periodic unit-cell twinning of a cubic-close-packed element structure and occupation of the trigonal-prismatic holes by the T atoms. The untwinned segments have been alternately stippled or left clear.

Space group *Pnma* Unit-cell dimensions $a_{Ni_2Si} = 4(\sqrt{2}/\sqrt{1 \cdot 1}) a_{II} = 1.705 a_{II}$ $b_{Ni_2Si} = a_{II}$ $c_{Ni_2Si} = \sqrt{11} a_{II} = 3.316 a_{II}$

Idealized point positions

	X	Ζ
4 Ni(1) in 4(c)	3	$\frac{1}{44} = 0.022$
4 Ni(2) in 4(c)	Ó	3
4 Si in 4(c)	<u>1</u>	0.154

both structure types have been found with transitionmetal silicides: Co_2Si , Ni_2Si , Ru_2Si , Rh_2Si and Ir_2Si adopt the Ni_2Si type, while Pd_2Si and Pt_2Si adopt the Fe_2P type.

Recently, it has been shown how structures with trigonal prisms can be derived by periodic unit-cell twinning of close-packed structures (Andersson & Hyde, 1974; Parthé, 1976). Following the procedure and notation used by Parthé (1976), the twinning along every second possible twin plane and occupation of trigonal-prismatic holes by T atoms must lead to a

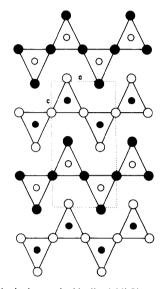


Fig. 4. Hypothetical, greatly idealized Ni₃Si structure identical to that shown in Fig. 3, but now described with the proper unit cell and shown in a projection along the axes of the trigonalprism columns.

Table 6. Survey of compounds in R-Pt up to 50 at.% Pt

Structure types

	Mn_5C_2	Th,Fe3	Ni ₂ Si	Mn,Si,	Er ₃ Ni ₂	Sm ₅ Ge ₄	CrB	FeB
		(<i>a</i>)			(<i>b</i>)		(c)	
		(a)			(<i>b</i>)		(C)	
		(a)			(<i>b</i>)		h(f)	(c)
		(a)			(<i>b</i>)		h(f)	(c)
		(f)						(c)
		(f)	(f)	(f)				(<i>c</i>)
			(f)	(f)				(c)
			(f)	(f)				(c)
			(f)	(f)				(c)
			(f)	(f)				(c)
I I			(f)	(f)				(c)
	(d)		(<i>d</i>)	(<i>d</i>)		(<i>d</i>)		(<i>d</i>)
			(f)	(f)				(c)
		(e)	(f)	(f)		(g)		(c)

References: (a) Olcese (1973). (b) Le Roy, Moreau, Paccard & Parthé (1977b). (c) Dwight, Conner & Downey (1965). (d) Iandelli & Palenzona (1975). (e) Geballe, Matthias, Compton, Corenzwit, Hull & Longinotti (1965). (f) This work. (g) Le Roy, Moreau, Paccard & Parthé (1977a).

structure of composition R_2T . The result for a cubicclose-packed base structure is shown in Fig. 3. After a unit-cell transformation, similar to that used in the derivation of the CrB structure, the hypothetical structure shown in Fig. 4 can be recognized as a greatly idealized Ni₂Si structure. The corresponding theoretical structural data are given in Table 5. A comparison between real and idealized structures shows that the T atom coordinations (six R atoms in the surrounding trigonal prism and three extra Ratoms in the plane of projection) are identical, but that the R atom environments are different. It seems to be characteristic of the real Ni₂Si structure type (and also of the Fe_2P structure type) that the R atoms tend to adopt the atomic arrangement found in the W structure. This is supported by the observation that in other structure types found with other rare-earthtransition-metal compounds, e.g. the U₃Si₂ and Er₃Ni₂ types, one can observe R_6T trigonal prisms together with complete R_8R tungsten-like cubes.

A survey of all known R-Pt compounds up to 50 at.% Pt is given in Table 6. The structures of the R-Pt compounds may be compared with those of the R-Ni and R-Pd compounds for which surveys have already been published (Parthé & Moreau, 1977). Nearly all structure types occurring in R-Ni are built up of trigonal prisms, the exceptions being in the R-Pdsystem where both the Ho₅Pd₂ and CsCl types are found, and in the R-Pt system where the Mn_sSi₃ type is also found. Only the heavy, small rare-earth elements participate in the formation of these abnormal structure types. In the group of structure types which are built up of trigonal prisms there are a few that are found in compounds with Ni, Pd or Pt (e.g. Th₇Fe₃, Er₃Ni₂ or CrB), while others occur only with one particular alloying partner (e.g. Fe₃C, Dy₃Ni₂, Y_3Ni_2 only with R-Ni compounds, U_2Si_2 only with R_3Pd_2 compounds and Ni₂Si exclusively with R_2Pt compounds). At the present time we do not know the reasons for these occurrences.

References

- ANDERSSON, S. & HYDE, B. G. (1974). J. Solid State Chem.9, 92-101.
- BETTER, B., HÜTZ, A. & NAGORSEN, G. (1976). Z. Metallkd. 67, 118–119.
- BISWAS, T. K. & SCHUBERT, K. (1967). Z. Metallkd. 58, 558-559.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321–324.
- DWIGHT, A. E., CONNER, R. A. & DOWNEY, J. W. (1965). Acta Cryst. 18, 835-839.
- GEBALLE, T. H., MATTHIAS, B. T., COMPTON, V. B., CORENZWIT, E., HULL, G. W. & LONGINOTTI, L. D. (1965). *Phys. Rev. Sect. A*, **137**, 119–127.
- HOHNKE, D. & PARTHÉ, E. (1966). Acta Cryst. 20, 572-582.
- HOHNKE, D. & PARTHÉ, E. (1969). J. Less-Common Met. 17, 291–296.
- IANDELLI, A. & PALENZONA, A. (1975). J. Less-Common Met. 43, 205–209.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
- LE ROY, J., MOREAU, J. M., PACCARD, D. & PARTHÉ, E. (1977*a*). Acta Cryst. B**33**, 2414–2417.
- Le Roy, J., Moreau, J. M., Paccard, D. & Parthé, E. (1977b). Acta Cryst. B33, 2414–2417.
- MCMASTERS, O. D., GSCHNEIDNER, K. A., BRUZZONE, G. & PALENZONA, A. (1971). J. Less-Common Met. 25, 135–160.
- MOREAU, J. M. & PARTHÉ, E. (1973). J. Less-Common Met. **32**, 91–96.
- OLCESE, G. L. (1973). J. Less-Common Met. 33, 71-81.
- PARTHÉ, E. (1976). Acta Cryst. B32, 2813-2818.
- PARTHÉ, E. & MOREAU, J. M. (1977). J. Less-Common Met. 53, 1–24.
- RAMAN, A. & GHASSEM, H. (1973). J. Less-Common Met. **30**, 185–197.
- Томан, К. (1952). Acta Cryst. 5, 329-331.
- XRAY system (1976). Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- YVON, K., JEITSCHKO, W. & PARTHÉ, E. (1977). J. Appl. Cryst. 10, 73-74.